ѧУҪÎÅ Ê×Ò³  >  ÑÌ´óÐÂÎÅ  >  ѧУҪÎÅ  >  ÕýÎÄ

ÊýѧѧԺУÓÑÕÅÈô±ùÔÚ¹ú¼Ê¶¥¼âÊýѧÆÚ¿¯¡¶Acta Mathematica¡··¢±íÎÄÕÂ
×÷ÕߣºÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº     ÈÕÆÚ£º2024-09-19     À´Ô´£ºÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº    

¡¾±¾Õ¾Ñ¶¡¿½üÈÕ£¬×ðÁú¿­Ê±¹ÙÍøÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº2007¼¶Ð£ÓÑÕÅÈô±ùÓëÕã½­´óѧÊýѧ¸ßµÈÑо¿Ôº½ÌÊÚËïáºÏ×÷µÄÌâΪ¡¶Collapsing geometry of hyperk?hler 4-manifolds and applications¡·£¨ËÄά³¬¿­ÀÕÁ÷ÐεÄÌ®Ëõ¼¸ºÎ¼°ÆäÓ¦Ó㩵ÄÑо¿³É¹ûÔÚ¹ú¼Ê¶¥¼âÊýѧÆÚ¿¯¡¶Acta Mathematica¡·ÉÏ·¢±í¡£ÎÄÕ¶ÔËÄά³¬¿­ÀÕµÄÁ÷ÐÎÌ®Ëõ¼¸ºÎ½øÐÐÁËÑо¿£¬²¢Ö¤Ã÷Á˸ÃÁìÓòÄÚµÄÁ½¸öÖøÃû²ÂÏ룬Ϊ¸ÃÁìÓòµÄÒ»ÏîÖØ´óÍ»ÆÆ¡£

ÂÛÎÄÕªÒª£¨Abstract£©£ºWe investigate the collapsing geometry of hyperk?hler 4-manifolds. As applications, we prove the following two well-known conjectures in the field.(1) Any collapsed limit of unit-diameter hyperk?hler metrics on the K3 manifold is isometric to one of the following: the quotient of a flat 3-torus by an involution, a singular special K?hler metric on the 2-sphere, or the unit interval.(2) Any complete hyperk?hler 4-manifold with finite energy (i.e., gravitational instanton) is asymptotic to a model end at infinity.

¾ÝϤ£¬¡¶Acta Mathematica¡·ÊÇÈ«ÇòËÄ´ó¶¥¼âÊýѧÆÚ¿¯Ö®Ò»£¬ÓÉÈðµä»Ê¼Ò¿ÆÑ§ÔºMittag-LefflerÑо¿ËùÓÚ1882Äê´´¿¯£¬º­¸ÇÊýѧ¸÷ÁìÓò×î¸ßÖÊÁ¿µÄÑо¿ÂÛÎÄ£¬¼¾¿¯£¬Ã¿Äê2¾í£¬Ã¿¾í2ÆÚ£¬È«Ä깲ʮÓàÆªÂÛÎÄ¡£


ÐÂÎÅÁ´½Ó£º

ÕÅÈô±ù£¬ÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº2007¼¶±¾¿ÆÉú£¬ÑÌ´óÊ×λ¡°Ð£³¤½±Ñ§½ð¡±»ñµÃÕߣ¬2011Äê±¾¿Æ±ÏÒµºóÒÔÈ«¶î½±Ñ§½ð±»ÃÀ¹úÆÕÁÖ˹¶Ù´óѧ²©Ê¿ÏîĿ¼È¡£¬Ê¦´ÓÖøÃû¼¸ºÎѧ¼ÒAlice Chang£¨ÕÅÊ¥ÈÝ£©ºÍPaul Yang£¬2016Äê»ñµÃÆÕÁÖ˹¶Ù´óѧ²©Ê¿Ñ§Î»¡£2016ÄêÖÁ2020ÄêÔÚŦԼÖÝÁ¢´óѧʯϪ·ÖУ£¨Stony Brook University£©´Óʲ©Ê¿ºóÑо¿¹¤×÷£¬ÔøÔÚÆÕÁÖ˹¶Ù´óѧÈÎÖ°ÖúÀí½ÌÊÚ£¬ÏÖÈÎÃÀ¹úÍþ˹¿µÐÇ´óѧÂóµÏÑ··ÖУÖúÀí½ÌÊÚ£¬Ôø»ñ2023Äê¶ÈÊÀ½ç»ªÈËÊýѧ¼ÒÁªÃË×î¼ÑÂÛÎĽ±¡£Ö÷ÒªÑо¿ÁìÓòΪ¹²Ðμ¸ºÎ¡¢¶ÈÁ¿¼¸ºÎ¡¢¿­ÀÕ¼¸ºÎµÈ£¬ÔÚËúËõÁ÷ÐÎÑо¿ÖÐ×ö³öÖØÒª³É¹û£¬ÎÄÕ·¢±íÔÚActa Mathematica¡¢Journal of the American Mathematical Society¡¢Duke Mathematical Journal¡¢Geometry and Topology¡¢Advances in MathematicsµÈ¹ú¼Ê¶¥¼¶ÊýѧÆÚ¿¯¡£


À´¸åʱ¼ä£º9ÔÂ19ÈÕ      ÉóºË£ºÕÅÒúêÏ      ÔðÈα༭£ºËïÑÞ

°Ù¶ÈһϠËÑË÷ ×ðÁú¿­Ê± - ÈËÉú¾ÍÊDz«!